views
The glute bridge and hip thrust are assistance exercises often used in an effort to strengthen the glutes for the squat. They are also utilized in the world of rehabilitation for “underactive” glutes.
The aim of this article is to break down the functional mechanics of the bridge in comparison to the squat, and explain how it’s possible to train the bridge, yet still be unable to recruit the glutes during the squat.
How the Muscles Work
Before we analyze the squat and the bridge, we must begin with principles that allow us to understand how muscles function in an isolated exercise like the bridge versus the compound movement of the squat.
“The bridge has a high EMG activity; therefore, it should teach our glutes to work when we perform the more functional, compound squat. So why doesn’t this happen?”
A lot of exercise science concerns strengthening muscles in an isolated way. This isolated method is based upon a concentric muscular contraction that shortens and creates motion. In the case of http://batchbakeshopbaltimore.com/substances/anastrozole the bridge, the glute concentrically contracts to produce hip extension.
In an article called Hip Thrust and Glute Science, Bret Contreras discussed the science of maximally recruiting the glutes, including a study on the optimal amounts of hip and knee flexion required for the greatest EMG readings. The purpose of this article is not to question his methods, as they are correct for the function and goal for which they are used – maximum glute contraction for maximal hypertrophic gains. Instead, this article will show how the bridge is not correct for improving glute function in our goal, the squat.
The glute bridge has been supposedly developed further with the use of bands around the knees to push out against (hip abduction) and turning the toes (external rotation). The theory is that performing all three concentric glute muscle actions simultaneously (extension, abduction, external rotation) will ensure maximum EMG activity of the glute.
“Conscious muscle contractions come from isolated movements, but during functional (multi-jointed) movement it is impossible to tell every muscle to work.”
A high EMG reading is considered of great importance in terms of how good an exercise is at recruiting a muscle. The bridge has a high EMG activity; therefore, it should teach our glutes to work when we perform the more functional, compound squat.
So why doesn’t this happen?
How the Body Works
In the bridge, you aren’t teaching the glute to squat, but only to hip extend. The bridge works in the lying face-up position, with a nervous system that is as good as asleep. Relate this to prolonged bed rest, where muscles atrophy and people get weaker because we have lost our fight against gravity, which is the thing that stimulates low-grade constant muscle activation.
When we lie down, we are no longer fighting gravity. This means the nervous system throughout the body is experiencing little to no activation. So when the hips are driven upward, the only neurological drive goes to the glutes, hence the high EMG reading for the bridge.
When we stand under load ready to squat, the amount of pressure the whole nervous system experiences is greater than that of the bridge. As we begin our descent and the hips are moving toward the floor, there is neurological activity going to every muscle of the body. As we squat, muscles within the hip are all shortening and lengthening at different times, learning how to work as a team to overcome both gravity and the load that is traveling with momentum.
This is one of the key factors as to why the glute bridge doesn’t transfer to squatting. The body works as one complete system, with a huge neurological conversation going on between the muscles to complete the task. When we perform a glute bridge, the glutes are learning to work in isolation, and there is little conversation with neighboring muscular friends. Consequently, when we stand up and perform a squat, the glutes no longer know when they need to contract relative to the other muscles working during the compound squatting movement.